

BIOSOST-AGRO: BIOPLÁSTICOS BIODEGRADABLES A PARTIR DE LODOS DE DEPURADORA PARA USOS AGRÍCOLAS

P. Oulego*, M. Carreño, A. Laca, M. Díaz

Departamento de Ingeniería Química y Tecnología del Medio Ambiente Universidad de Oviedo *oulegopaula@uniovi.es

ÍNDICE

- 1. Introducción
- 2. Objetivos
- 3. Metodología
- 4. Resultados y discusión
- 5. Conclusiones

INTRODUCCIÓN

Introducción: Problemática

PLÁSTICOS

Elevado impacto ambiental: gran producción, bajo reciclaje y nula biodegradabilidad

Generación de microplásticos: riesgos para la salud

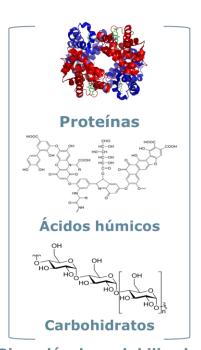
LODOS de DEPURADORA

Creciente producción: necesidad de correcta gestión mediante vías efectivas de valorización

Introducción: Solución

Producto sostenible y biodegradable

Alineación con la economía circular (ODS 6 y 12) y la legislación vigente (Ley 7/2022)


PROBLEMA PLÁSTICOS

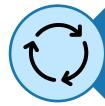
Introducción: Solución

Biomaterial

Bolsa contenedora del fitosanitario

Biomoléculas solubilizadas

OBJETIVOS



Objetivos

Escalar y optimizar el proceso de producción

Evaluar la reproducibilidad y calidad del producto en planta piloto

Analizar la viabilidad técnica y económica

METODOLOGÍA

Metodología

Materia prima y tratamiento

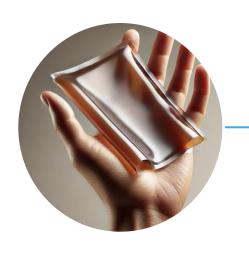
Tratamiento de los lodos de depuradora mediante hidrólisis térmica

Validación funcional

Caracterización físico-química, mecánica y microbiológica y ensayo funcional

Formulación del biomaterial

Concentración de los biopolímeros y mezclado con agentes plastificantes para su moldeo por solvent casting


Escalado

Simulación del proceso de producción a nivel industrial y análisis ACV

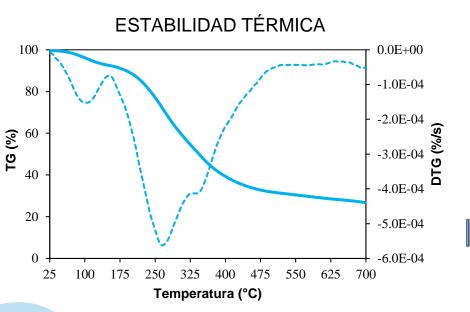
Metodología

Escalado

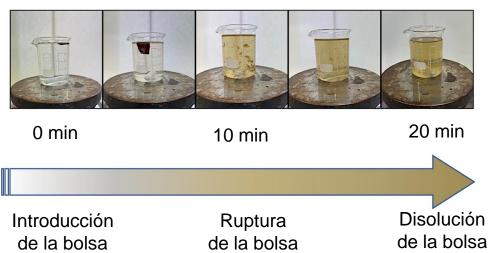
Simulación del proceso de producción a nivel industrial a partir de datos experimentales

Análisis de ciclo de vida (ACV) y huella de carbono definiendo como unidad funcional un lote de producto y realizando el estudio de la cuna a la puerta

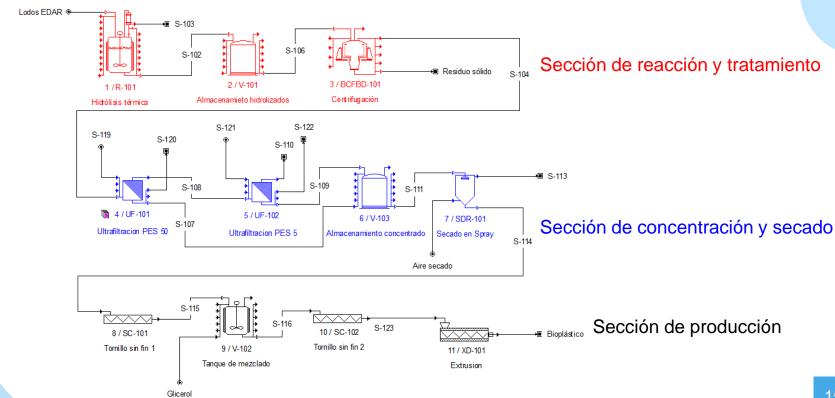
RESULTADOS Y DISCUSIÓN

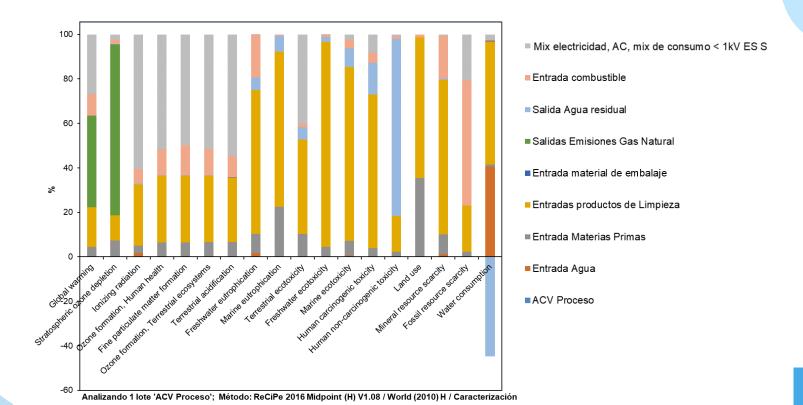

Resultados y discusión: Propiedades

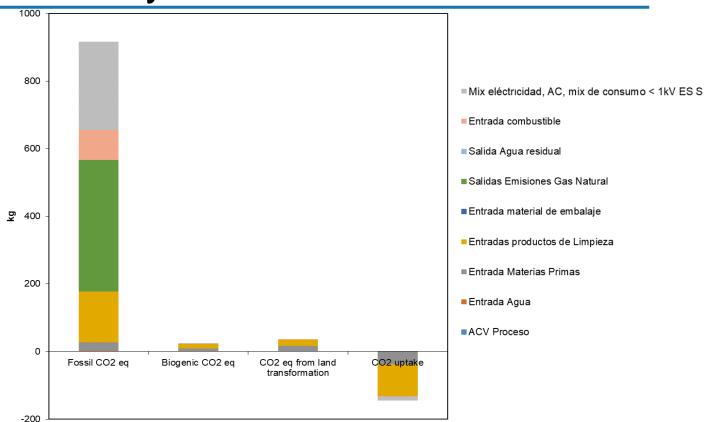
Parámetro		Valor	61 N/mm
Resistencia a la punción (N/mm)		63.7 ± 0.2	Material capas papel, aluminio
Deformación a la punción (%)		27.8 ± 0.9	y PVDC
Permeabilidad al vapor de agua (× 10 ⁻⁹ g/m·s·Pa)		1.5 ± 0.1	
Solubilidad (%)	pH 5.0	90 ± 2	
	pH 7.0	95 ± 2	> 90%
	pH 9.0	93.1 ± 0.3	
Espesor (mm)		0.2 ± 0.01	
Color	Índice de blancura	6.7 ± 0.3	Valor próximo a cero color oscuro
	Chroma	24 ± 1	cero color oscuro
Transparencia		5.01 ± 0.05	



Resultados y discusión: Propiedades


ENSAYO FUNCIONAL: SOLUBILIDAD


Resultados y discusión: Diseño


Resultados y discusión: ACV

Resultados y discusión: ACV

Analizando 1 kg 'ACV Proceso'; Método: Greenhouse Gas Protocol V1.03 / C02 eq (kg) / Ponderación

Conclusiones

Conclusiones

Economía circular

Se aprovecha un residuo sin valor en un material funcional con aplicación en agricultura

Gran potencial

La demanda de materiales biobasados crece cada año, mientras que el precio de los plásticos convencionales tiende a aumentar

Madurez tecnológica

La madurez tecnológica del proceso hace que su implementación sea viable en poco tiempo con inversions moderadas

Conclusiones

BIOSOST-AGRO: BIOPLÁSTICOS BIODEGRADABLES A PARTIR DE LODOS DE DEPURADORA PARA USOS AGRÍCOLAS

P. Oulego*, M. Carreño, A. Laca, M. Díaz

Departamento de Ingeniería Química y Tecnología del Medio Ambiente Universidad de Oviedo *oulegopaula@uniovi.es

